WP 3.2 Control Architecture of Future Power Systems

Kai Heussen

CEESA meeting Aalborg January 2010

Centre for Electric Technology DTU Elektro

DTU Electrical Engineering

Upcoming report:

TOWARD CONTROL ARCHITECTURE FOR 100% RENEWABLE ENERGY SYSTEMS

Introduction and Application of Functional Modeling for Scenario Analysis and Design

DTU Electrical Engineering Centre for Electric Technology

17-02-2010

Outline of Report.

1. Introduction: Scenarios as representations

2. Representation in Functional Models

- 1. Means and Ends
- 2. Thinking Functional
- 3. Representing Control Levels (time scales, system topology)

3. Adding Wind to the System

- 1. Option 1 "just add it"
- 2. Option 2, etc, local balancing, coupled balancing, common market
- 4. Formulating Requirements from Functional Models

5. Conclusions

(implications for scenario development)

DTU Electrical Engineering

Technical Feasibility as a design question

(1) "Can it be done **?**"

requires to answer:

- (2) "How would it be done?"
- a) as we always did? \rightarrow go, simulate!
- b) Different? Well then how?

In other words:

Technical feasibility is first of all a question of technical design.

DTU Electrical Engineering

Representation in Scenario Models

- A scenario model is based on *implicit representations* of functions (operational principles and practices)
- The use of physical units (energy, power) does not mean that we are just representing "physics"
 → energy flow functions

EnergyPlan scenario tool overview. http://energy.plan.aau.dk/

Control functions are often overlooked, or assumed to be "the equations" (and yes, that is where they are *hiding*! ^(C))

DTU Electrical Engineering

Means-Ends and Functions in Scenarios

- Instead of talking about "the physical system", talk about the system-in-view
- the system-in view is (multi-layered): different behavioural and functional models apply for each layer.

DTU Electrical Engineering

Centre for Electric Technology

DTU

<u>Reminder:</u> – "What happens within the hour?"

- 12hours:
 - 1h vs 15min
- 1h with higher resolution
 ... As the output of a larger windfarm

DTU Electrical Engineering

Storage and Fluctuation : *Control-Agents, Counter-Agents, Time Scales*

- Uncertainty and variatbility (ξ) are controlled, and thus encapsulated, control layer by control layer
- The means used by control systems needs to be considered in two dimensions: *power* and *energy* (per time scale)
- How to utilize Energy storage is the architecure challenge

DTU Electrical Engineering Centre for Electric Technology

Storage and Fluctuation : *Control-Agents, Counter-Agents, Time Scales*

- Uncertainty and variatbility (ξ) are controlled, and thus encapsulated, control layer by control layer
- The means used by control systems needs to be considered in two dimensions: *power* and *energy* (per time scale)
- How to utilize Energy storage is the architecure challenge

DTU Electrical Engineering Centre for Electric Technology

Storage and Fluctuation : *Control-Agents, Counter-Agents, Time Scales*

- Uncertainty and variatbility (ξ) are controlled, and thus encapsulated, control layer by control layer
- The means used by control systems needs to be considered in two dimensions: *power* and *energy* (per time scale)
- How to utilize Energy storage is the architecure challenge

DTU Electrical Engineering Centre for Electric Technology

Feasible Scenarios

– contribution to scenario modeling

- Scenarios are modeled on understanding of current energy systems
- Granularity of scenarios makes then reasonably accurate
- Regulation options can be structured and control features
 integrated with technology options
- Possible suggestions for careful revision of control models

DTU Electrical Engineering

Other research outputs: Connecting to Value-exchange (markets)

- Next stay abroad: research in modelling service exchange for household appliances control.
- Connection of control models with service models.
- (Investiagation of ancillary service markets)

Forward-DTU Electrical Engineering Centre for Electric Technology

Thanks for your Attention!

Questions? Welcome!

DTU Electrical Engineering

Planned CEESA related output (decided after meeting)

- Articles
 - <u>Study on Electric Vehicle contribution to system stability</u>
 - WP 3.1 & 3.2 joint article
 - "Electrical Island mode"
 - Bornholm as example
 - "Interconnected mode"
 - West-Denmark as example
 - Setpoints with and without market schedule (maybe)
 - Functional Modeling for Scenario Analysis (based on report presented)
 - (Study case on altenative control architectures.)
- Recommendations/requirements to WP 4.

DTU Electrical Engineering

Backup-slides

ANALYSIS (PRESENTED IN VEJLE)

DTU Electrical Engineering

Three (Electrical) "Blind Spots"

- <u>Time Resolution</u>
 - "What happens within the hour?"
 - \rightarrow Fluctuations and balancing
- Granulation & spatial distribution
 - Big central or distributed generation?
 - Placement
 - \rightarrow transmission capacities

• The future is uncertain! How to prepare?

- E.g. Uncertainty of wind power prediction
- \rightarrow Market Design
- → Control Architecture

DTU Electrical Engineering

EnergyPlan scenario tool overview.

(1) Time Resolution – what happens within the hour?

- 12hours:
 - 1h vs 15min
- 1h with higher resolution
 ... As the output of a larger windfarm

DTU Electrical Engineering

(2) Granulation & spatial resolution

- The ramping capability of a generation unit is proportional to its size
 - Big units with inertia make "friendly" (slow, controllable)
 - Small units make it more flexible but difficult to control
- Big central or distributed generation?
 - \rightarrow Ramping / Flexibility
- But also: Location
 - Will you balance wind power locally?
 - \rightarrow transmission capacities

DTU Electrical Engineering

(3) Dealing with uncertain future ...

- Next day / hour / minute / second
- "benefit -of-hindsight" used in EnergyPlan
 - Yearly distribution is optimally utilized with storage
- Following a plan under uncertainty when operating
 - <u>Uncertainty of forecast cannot be eliminated!</u>
 - prepare for the uncertain.

 \rightarrow What Can be known? (Theoretical limits?)

- \rightarrow Allocation of balancing resources (Markets)
- \rightarrow Connection of control architecture and short-term markets

DTU Electrical Engineering

Addendum:

dialogue hypothetical & from the minutes

Slide presented at Ballerup meeting:

System Analyst: Here's the Scenario. Is it feasible?

Engineer: Looks difficult --- Let me try! ...

... Hmmm, not with given technology

- SA: It's ok, you don't have to invent the whole system. I just want to know if it *would* be feasible.
 - E: (puzzled) What do you mean? I mean, how can I simulate a system that I don't know.

In Engineering, system design comes before feasibility.

From the minutes of Ballerup meeting:

- Henrik Lund: We need to know from the WP if it can be done?
- Kai Heussen: It probably can be done.
- Henrik Lund: Can you be certain it can be done?
- **Poul Erik Morthorst:** We should state what is required in order for the system to work.
- Henrik Wenzel: Different percentage numbers between minimum and maximum should be included
- Main conclusion:

Electric vehicles are important for our scenarios.

section II

ACTIVITIES IN WP3(.2)

DTU Electrical Engineering

Centre for Electric Technology

DTU

What is in the scenarios? (IDA 2030 / 2050)

A. Central Generation

- Replace future power [...] by fuel cell CHP plants, equal to 35-40 per cent of total power plants in 2030, (individual house heating →district heating CHP)
- Introduce 450 MWe large heat pumps
- Replace all CHP and power plants by fuel cell-based or biogas or biomass gasification

B. Renewable Electricity (uncontrolled)

- Increase wind power 3000 MW to 6000 MW in 2030 onshore@3000MW, 3000MW offshore)
- 500 MW wave; 700 MW PV
- Increase wave power to 1000 MW
- Wind power (all offshore) IDA2050: 7000MW // IDA2050Biomass: 3000MW // IDA2050Wind: 12000MW

C. (controllable) Distributed Generation

- Replace natural gas boilers by microCHP, ~10 per cent of house heating
- Convert micro CHP systems from natural gas to hydrogen

D. Electricity Demand Reduction

- ... by 50 per cent in private households
-by 30 per cent in industry

E. (controllable) Demand flexibility

- Flexible electricity demand in order to integrate wind power and CHP better in the energy system. (quantification?)
- 3TWh of industrial heat from heat pumps
- F. Transportation V2G
- 20 per cent of fuel for road transportation by electricity (and 20 per cent by biofuels)
- Stabilise the transportation demand at the 2030 level

Initial comments / Apparent challenges

 The fundamental (frequency-forming) unit of power systems is the synchronous generator. Introduction of *fuel-cell CHP plants* means to remove stabilizing system inertia.

→complete replacement of CHP plants by fuel cells seems most radical system change

All measures are stated with reference to Ref2030 scenario*

 → scenario descriptions are only relative changes.
 A "business as usual" power system model does not exist.
 Further, a power system for the whole of Denmark is not available for us, neither tractable.

DTU Electrical Engineering

Mapping to Electricity perspective

- 1. Generation Units
- 2. Grid Design
- 3. Balancing Control
 - 1. Controllability issues
 - 2. Balancing resources (time scales/ volume)
- 4. Network Control (Operational stability)
 - 1. Voltage Control
 - 2. Distributed inputs
 - 3. Reactive flows and congestion management

5. (Protection Systems)

DTU Electrical Engineering

Centre for Electric Technology

←more renewables,	less	inertia?
-------------------	------	----------

- ← transmission network, components?
- *←Intermittency*

← Changing flows

na congestion management										
	Measures	А.	B.	C.	D.	E.	F.			
ms)	Tech. Areas	Central Generation	renewable Electricity	Distributed Generation	Demand reduction	Demand Flexibility	Transportation	WP3.1	WP3.2	
	I.	Х	Х		-	-	-	?	?	
д	i.	Х	Х	Х	?					
	II.	Х	Х		Х	Х	Х	X	Х	
	i.	Х	Х		?	Х	Х	X	Х	
	ii.		Х	Х		Х	Х		Х	
	III.		Х	Х	-	Х	?	X	x?	
	i.		Х			Х		?	Х	
	ii.			Х		Х		X	Х	
	iii.	Х				Х	Х	Х		
	IV.	?	?		-	?		X?	?	
			V m	pior y minor ?	unclear no					

17-02-2010

Integration with WP 1 / EnergyPlan

- EnergyPlan adresses some grid requiremnts
- Required *"stabilization share"* (connected large synchronous generation):
 - Estimated 30% according to experience from system operators
 - CEESA calcualtes with 0%
 - Theoretical minimum unknown
- stabilizing contribution from renewable energies
 - Possible, to be investigated...

DTU Electrical Engineering

