

Instrumentation of Scenarios - Use of Policy Instruments to achieve our long term goals

Poul Erik Morthorst Systems Analyses Division Risø DTU

June 2009
 Ceesa Annual Meeting
 Haraldskjær

Risø DTU National Laboratory for Sustainable Energy

100% Renewable Scenarios

- **Biomass scenario**. Based on 100% RES low demand, mostly biomass.
- Wind scenario. Based on 100% RES low demand, mostly wind
- *High demand.* Based on the 2004 energy demand, both wind and biomass.

Levels of Analyses

International Framework

- EU targets
- EU Emission trading system

National possibilities

- -EU non-ETS
- -All the different forms of regulation, tariffs etc.

EU Energy Policy Framework

• Binding targets in EU: -20-20-20 i 2020

- 20% reduction of greenhouse gases by 2020 compared to 1990
 - this target can be raised to 30% subject to binding international climate change agreements
- 20% of final energy consumption in the EU has to be supplied by renewable energy
 - Existing target was 12% in 2010 and non-binding 7% expects to be achieved
- 20% increase in energy efficiency by 2020 compared to a reference
- 10% biofuels in transport by 2020

ETS and non-ETS

Targets

EU CO2 Reduction Policy

Non-ETS

-Required reduction of CO2 of1068 Mio.T-Allowed use of Credits783 Mio.T

• ETS

-Required reduction of CO2 of 2635 Mio.T-Allowed use of Credits 1017 Mio.T

Grand Totale

- Approx. 50% of the 20% reduction by 2020 can be achieved by buying credits from outside Europe
- Moreover, the inclusion of Eastern European countries in EU has also introduced a large number of cheap (free) reduction options.
- •The total reduction achieved by the EU system in 2020 might be less than "real" 5% achieved in Europe compared to the promised 20%

National Possibilities

Demand side Policy Instruments

- Households
- Services
- Industry
- Agriculture

• Supply side Policy Instruments

Personal CO2 Allowances

Quota = basicquota + N* personquota

Quota = basicquota + N*personquota + EVquota + m2*heatpumpquota

Standards

Policy means for energy renovation of the old building sector.

- Energy conservation potential corresponding to approx. 30% of the existing consumption
- SBI report lists a number of negative investor considerations:
 - No faith in human influence on climate changes
 - Too long pay-back times
 - Free money are reserved for other purposes
 - Better wait until a major renovation is necessary
 - Private comfort is disturbed during renovations
 - Lack of detailed knowledge concerning economic and comfort advantages of energy renovations
 - Major renovations may harm the original architecture.

POLICY MEANS FOR PROMOTION OF ENERGY

- Green building tax graduated in accordance with the energy intensity of the house.
- Labelling of energy intensity of all houses as a basis for green building taxes.
- Tax reductions and other forms for investment subsidies as support for strong energy renovations and installations of renewable energy sources.
- Introduction of a new scheme where old houses that are difficult to put through an efficient total renovation as an alternative are abolished and replaced by a "passive house".
- Introduction of Personal Carbon Allowances including heat and electricity for private houses.

Reliable long term framework to regulate energy consumption by industry

Industry is Challenging!!

•Specific Challenges in regulating Industry

- Complex processes
- To utilize the large existing knowledge
- To make binding agreements with industry
- To create green innovation in industry

Use of Policy instruments in Industry– 2012

OneWay Communication

Communication between demand and production

Communication

Communication

Simpel Charge of EV's

Cheapest Charge of EV's

Optimised charge/discharge of EV's

Impact on critical excess power production **\vec{k}** by year 2025

Conclusion

- A large portefolio of different instruments exists for implementation of our scenarios
 - The EU framework makes it difficult especially in the short run
 - We have to utilize the national opportunities to the full limit
- Overall regulation schemes all have their pros et cons
 Some of them are more difficult to administrate than others
- Technology and instrumentation should go hand in hand
- A 100% renewable system might require a new market set-up because the existing one cannot cope with the large amounts of variable energy produced